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Abstract. The closed systems of contemporary Artificial Intelligence do not seem
to lead to intelligent machines in the near future. What is needed are open-ended
systems with non-linear properties in order to create interesting properties for the
scaffolding of an artificial mind. Using post-structuralistic theories of possibility
spaces combined with neo-cybernetic mechanisms such as feedback allows to ac-
tively manipulate the phase space of possibilities. This is the field of Generative Ar-
tificial Intelligence and it is implementing mechanisms and setting up experiments
with the goal of the creation of open-ended systems. It sidesteps the traditional ar-
gumentation of top-down versus bottom-up by using both mechanisms. Bottom-up
procedures are used to generate possibility spaces and top-down methods sort out
the structures that are functioning the worst. Top-down mechanisms can be the en-
vironment, but also humans who steer the development processes.

1 Introduction

The field of Artificial Intelligence has not yet seen an unifying theory that captures
the fundamentals for the creation of intelligent machines. Since its conception at
the Dartmouth conference in 1956 at least three paradigms have permeated its ex-
istence. The top-down paradigm was supposed to be for the creation of models of
the mind and eventually led to different types of logic and reasoning and later also
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sub-symbolic processing. The second paradigm focussed on the creation of intelli-
gent machines (robots). Many scientist used introspection of their own mind as a
tools for the creation of these machines which was challenged in 1969 [28] using
theories of biosemiotics, which is the interpretation of (sensory) signals in biolog-
ical systems. This led to the bottom-up, behavior-based robotics [6]. The third, but
mostly forgotten, paradigm is the field of cybernetics, , which was already being in-
vestigated when the Dartmouth conference was being held. Before the conference,
in 1950, an article in the Scientific American showed two robots which consisted
out of a few vacuum tubes, control loops and feedback mechanisms [16]. The field
of cybernetics could be defined as: ’The theoretical study of communication and
control processes in biological, mechanical, and electronic systems, especially the
comparison of these processes in biological and artificial systems.’1 The division in
the field of Artificial Intelligence cannot be accepted as the answer to the question of
how to build intelligent machines. An integrated perspective is necessary. The field
of neo-cybernetics tries to bridge the gaps in AI with an extra addition: The property
of emergence. It is unknown whether neo-cybernetics is also sufficient. What is it to
study Artificial Intelligence if there is not even a common denominator within the
field? The entry chosen in this article toward the creation of intelligent machines
is a post-structuralist approach based on the dynamical aspects of non-linear sys-
tems. It seems that neo-cybernetics and post-structuralism meet each other in non-
linear dynamical systems theory and can assist each other. Cybernetics requires the
deeper underpinnings of post-structuralism, and post-structuralism can proof itself
using intelligent machines based on neo-cybernetic mechanisms. This symbiosis is
dubbed: Generative Artificial Intelligence [31]. In Generative AI (GAI) the possibil-
ity spaces of post-structuralism are actively being manipulated using neo-cybernetic
mechanisms in order to scaffold the minds of intelligent machines.

2 Virtual-Actual

In Deleuzes actual-virtual distinction, the virtual is not so much a possible but rather
fully real, waiting to be actualized. The actual is not the point of departure of change
and difference, but that which has been effected from potentiality, or, the virtual [12].
This notion of the virtual allows Deleuze to describe the modal relation of potential-
ity against the actuality of complex systems. Thus, the virtual allows Deleuze to talk
about phase spaces of systems and the patterns and thresholds that characterize their
behavior. To do so, Deleuze refers to multiplicities, a term he uses to treat the mul-
tiple in itself as a substantive, rather than an attribute of substance. The realm of the
virtual, also described as the plane of consistency [13] is populated by multiplicities,
which provide the virtual pattern or structure of morphogenetic processes that ac-
tualize bodies, assemblages, and strata. DeLanda [11] uses Deleuzes actual-virtual
distinction to propose a new agenda for science and philosophy. DeLanda wishes to
provide scientific explanations of emergence: processes where novel properties and
capacities emerge from a causal interaction [11]. Whereas science was previously

1 From: http://www.answers.com/topic/cybernetics



Generative Artificial Intelligence 109

preoccupied with simple laws acting as self-evident truths (axioms) from which
all causal effects could be deduced as theorems Today a scientific explanation is
identified not with some logical operation, but with the more creative endeavor of
elucidating the mechanisms that produce a given effect. [11] To describe emergence,
DeLanda deploys a conceptual apparatus that that consists of emergent properties,
capacities, and tendencies. The sharpness of a knife is an example of an emergent
property. The shape of the cross-section of the knife makes up its sharpness, which
requires the knifes metallic atoms to be arranged in such a manner that they form
a triangular shape. Sharpness features emergence since individual metallic atoms
cannot produce the required triangular shape. What is more, sharpness provides the
knife with the capacity to cut things. However, this capacity remains potential with-
out a relational event, in this case an encounter with something that has the capacity
to be cut by the knife. Similarly, the metallic atoms of the knife must have the ca-
pacity to be arranged in such a manner that sharpness emerges. Finally, the knifes
blade may have the tendency to liquefy if certain conditions change, for instance
in case its environment exceeds a particular temperature. Like capacities, tenden-
cies are closely related to relational events (e.g. rising temperatures), but also to
emergent properties since the metallic atoms of the knife need to interact in such a
manner that the blade melts, something individual atoms cannot do. Whereas ten-
dencies can be enumerated (e.g. the states in which a particular material can be,
such as solid, liquid, or gaseous), capacities are not necessarily finite due to their
dependence on being affected and / or affecting innumerable other entities. In such
events, DeLanda argues in Deleuzian fashion, capacities and tendencies become ac-
tual, but neither tendencies nor capacities must be actual in order to be real. [11]
Here DeLanda draws upon Deleuzes actual-virtual distinction, which allows him to
ascribe reality to the virtual rather than brushing it off as a mere possible that lacks
reality.

2.1 Flat Ontologies and the Machinic Phylum

A wide variety of systems can be described in terms of virtual potentialities and ac-
tualizations thereof. DeLanda [11] describes a wide variety of systems ranging from
meteorological phenomena and insect intelligence to early human civilizations and
stone age economics in terms of their emergent properties, capacities, and tenden-
cies, which constitute a structure of the space of possibilities [11] that can be ex-
plored by means of computer simulations. Explanations of these different systems
may builds upon explanations of lower hierarchies in a process called bootstrap-
ping: a realist ontology may be lifted by its own bootstraps by assuming a minimum
of objective knowledge to get the process going and then accounting for the rest.
[10] The structures of spaces of possibilities have an objective existence [11] that
can be investigated mathematically by the imposition of an arrangement through
formalization or parametrizing. [11] Computer simulations enable exploration by
allowing experimenters to stage interactions between different entities and investi-
gate the emergent wholes that are the result of these interactions, thereby gaining an
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understanding of mechanisms of emergence. Philosophy can fulfil the role of syn-
thesizing simulation-enabled insights into an emergent materialist world view that
finally does justice to the creative powers of matter and energy. [11] In the afore-
mentioned process of bootstrapping, DeLanda wishes to avoid the postulation of
general entities (ideal types, eternal laws), since for a realist whose goal is to create
a mind-independent ontology, the starting point must be those areas of the world
that may be thought of as having existed prior to the emergence of humanity on
this planet. (DeLanda 2009, 28) Here DeLanda aligns himself with contemporary
critiques of correlationism the idea according to which we only ever have access
to the correlation between thinking and being, and never to either term considered
apart from the other. [20] By focusing on mechanisms of emergence, science now
has the ability to describe [w]holes the identity of which is determined historically
by the processes that initiated and sustain the interactions between their parts. [11]
Concepts that do not elucidate sequences of events that produce emergent effects are
considered irrelevant for scientific analyses. Philosophy emerges renewed, banished
of reified generalities like Life, Mind, and Deity. (Ibid.) This desire to rid scientific
explanations of reified generalities relates closely to the refutation of typological
thinking advanced by Deleuze and Guattari [13]. Typological thinking implies that
individuals are defined in terms of the species they belong to. Deleuze and Guattari
argue that the members of species are not so much defined by essential traits, but
by similarities in morphogenetic processes. The individual is the condition for the
emergence of species, rather than vice versa. One cannot identify a species without
referring to the individuals that constitute it, and the changes these individuals go
through cannot be explained through the limitations put on them by the species they
are said to belong to. Such imposed limits are merely restrictions of what the pro-
cesses of becoming that characterize individuals, which forces them into neatly fit-
ted categories. Deleuze and Guattari describe interacting parts (machinic elements,
and emergent wholes (nomadic spaces drawn up by interacting machinic elements).
These wholes may deliver assemblages that exist in a different spatio-temporal time
scale when compared to their constituent parts (i.e. organisms, families, govern-
ments, nations, etc.), but they do not have a different ontological status compared to
their elements [9] Similarly, researchers working in the field of complexity science
explain how systems attain higher levels of complexity without relying on external
organizing agents.DeLanda defines ontologies committed to the quirks and whims
of individuals and their processes of becoming as flat ontologies, which can be re-
lated to Deleuze and Guattaris machinic philosophy. Such flat ontologies cannot be
overcoded in dimensions supplementary to their own. Deleuze and Guattari [13]
speak of a machinic phylum as a set of self-ordering material processes inherent in
material, which enables emergent effects. There are in fact several phyla that tap into
the self-ordering forces of material. These phyla are effectuated by assemblages,
which are actualizations of the virtual (Ibid.). Machinic phyla may be explored by
what Deleuze and Guattari identify as artisans, who follow the traits of materials
and thereby actualize new assemblages [13]. Artisanal production relies on natural
processes and the activities of the aforementioned artisans, which makes the ma-
chinic phylym as much artificial as natural: it is like the unity of human beings and
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Nature. [13] The process of stratification by which assemblages are actualized from
the machinic phylum can be found in areas as different as geology, biology, metal-
lurgy, and social strata. Thus, the flat ontologies and machinic phylum of Deleuze
and Guattari enable the study of processes of actualization in a variety of domains.

2.2 Minor Science and Royal Science

For DeLanda, science need not neutralize the intensive or differentiating properties
of the virtual, much like his mentors Deleuze and Guattari argued. In this sense,
he has much to offer constructivist debates since his work attempts to provide both
an ontological and epistemological alternative to philosophies of science based on
axiomatic systems, deductive logic, and essentialist typologies, one that is grounded
in creative experiment rather than theory, in the multiplication of models rather than
the formulation of universal laws. [3] However, unlike his mentors, DeLanda grants
a particularly authoritative role to science in enabling a rigorous ontology of the
virtual. A sense of ontological completion takes root in DeLandas work over the
course of his various publications: from a more speculative alternative history pro-
duced by a robot historian [8], via the erudite exploration of the ability of science to
engage intensities [9], to his latest book that exerts a confidence in the exploratory
potential of computer simulations [11]. However, the rigorous approaches to the
virtual enabled by the flat ontologies and machinic phylum of Deleuze and Guattari
should not be approached in teleological terms, or a way to provide more robust
criteria to evaluate scientific progress. Deleuze and Guattari emphasize the impor-
tance of what they call minor science [13], which is the kind of science deployed
in artisanal production, as outlined above. Minor science works by pushing systems
to their intensive states in order to follow traits (indications of ’forces’, that is, sin-
gularities or self-ordering capacities) in material to reveal their virtual structures or
multiplicities. [4] The difference between minor science and Royal science,

Refers only to a differential in the rhythm and scope of the actual-virtual system From
our own historically specific point of view, some terms and concepts will necessarily
appear more adequate to the task than others. Science does not describe an objective
state of affairs so much as inscribe a more or less mobile point of view within things
themselves, causing a plurality of worlds to emerge from the virtual state of flux. [15]

Science produces more and less robust explanations, whose objectivity concerns a
coalescence of relations at a particular point in time. However, the virtual always
exceeds the scientific gaze and will continue to haunt the scientific observer: sci-
ence thus makes a leap into ontology simply by bringing its own laws and prin-
ciples into contact with the problem the chaos that haunts it thereby facilitating
and allowing itself to be swept away by the movement of becoming. [15] What is
more, scientific explanations intervene in the movement of becoming of the virtual
on the basis of the socio-technical conditions of the scientific enterprise. A more
thorough emphasis on data-driven methods will need to continuously tap into the
force of the virtual as described by Deleuze and Guattari. In the phase-space of vir-
tual exist abstract machines that are so powerful that they form the base of many
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of the living structures we see around on. This article tries to describe (a part of)
perhaps the most important one, the one that creates thinking matter. The basics
of this abstract machine consist of the following: There are self-maintaining genera-
tive mechanisms that create structures, these structures interact with an environment
that selects on this process. Usually there are many (as in millions or billions) of the
generative mechanisms with variations between them. Sometime these mechanisms
form meshworks of interacting components, and some of these meshworks become
generators themselves where (other) with other selection mechanisms, ad infinitum.
This describes many processes in living organisms. Some examples are the follow-
ing. Often animals and plants spawn a wealth of offspring (tens of thousands or even
millions), the environment deletes the worst ones and the unlucky ones and the few
that remain can become the next that generate offspring. Some plants/animals form
interacting meshworks which can be in many forms such as feeding on each other,
symbiotic relations, collaborations, sacrifice for the genes, . . . Another example is
the neurogenesis of the hominid brain. Around birth half of the neurons destruct
themselves. First many neurons are created, and then the worst ones are selected
against. During the first three years of the human infant many neurons have an axon
battle, where the amount of axons is reduced from approximately 6 to exactly 1.
Again, this is a generative mechanism (create many axons) followed by a selection
mechanism (destroy the ones with the least amount of working connections). The
same happens around puberty with the synaptogenesis of the dendrites, where many
connections are formed in the beginning, only to be followed by almost a decade
of the pruning of the synapses. In neurology these processes are called progressive
and regressive processes [14]. It is the fundamental nature of these two processes,
not their implementation, that Generative AI is discussing. Actual implementations
will most likely not resemble the biological mechanisms created by the known pro-
cess of biological evolution. It is the way in which the abstract machines operate
and are implemented that bootstraps the emergence of an intelligent sub system and
determines how well it operates in its environment. There is ample proof that this
abstract and generative machine, if reasonably well implemented, can lead to rather
flexible implementations that can operate in many different environment and handle
themselves in many different situations, as exemplified by the emergence of humans
during the course of biological evolution.

3 Closed and Open Systems in Artificial Intelligence

Systems in the field of Artificial Intelligence tend to be closed. As far as the authors
know, all systems in AI are closed systems. These closed systems do not allow
new properties to emerge. If there is flexibility at all, it only leads to a solution
that the creator wanted the machine to find. This implies that for every problem a
human has to create a new solution. This way of working will probably not lead
to intelligent machines on a human-level time scale since for every little problem
someone has to create a solution in the form of software. Only open-ended systems



Generative Artificial Intelligence 113

systems [25] display interesting properties such as self-organizing and emergence
[17], [32], which are required for the scaffolding of the mind [7]. Clark states:

. . . the old puzzle, the mind-body problem, really involves a hidden third party. It is
the mind-body scaffolding problem. It is the problem of understanding how human
thought and reason is born out of looping interactions between material brain, material
bodies, and complex cultural and technological environments.

This scaffolding of the mind is what we need for the creation of intelligent ma-
chines. Without automated procedures and mechanisms that can grow, diversify and
transform, humans will still be required for the creation of AI. Generative Artificial
Intelligence defines itself as the field of science which studies the (fully) automated
construction of intelligence. This is in contrast to contemporary AI, which studies
the understanding and construction of intelligence by humans. The hidden variable
is often that is requires many man-hours of work to create even the simplest solu-
tions. What is needed for the creation of intelligent machines are automated genera-
tive methods that can be steered by humans, instead of every detail being created by
humans. It is not clear what these procedures will be exactly, but the first glimpses
has been seen in research that turn the usual methodology up-side-down. AI sys-
tems usually try to limit the search space of possible solutions. By doing so they
also limit the possibilities of anything new arising. The closed systems from AI suf-
fer from the problem that they all follow the same methodology, namely: Input →
Process → Output (IPO). After the output the system halts, or waits for a new in-
put. Such an IPO system will not get the needed diversity of inputs needed to find
singularities in the phase space of solutions. For example, if a system is only using
visual input and no tactile information, then these inputs will not increase the possi-
bility of a learning algorithm to find the connection between hitting an object with
a manipulator and seeing the object move. If on the other hand tactile information
is added, then this extra amount of information flow through the system will create
an extra singularity where all this information is combined. So instead of lowering
the chance that a machine learning algorithm can find the connection because of
the increase of information in the input space as is usually thought, it actually in-
creases the probability of finding a solution due to an extra singularity that solves the
problem. In Generative AI is it important to create generative methods that create
possible solutions to problems that the machine encounters while interacting with
its environment. Figure 1 give a graphical representation of the movements through
a phase space. These generative methods can be implemented using software, as
will be explained in the next section, but can also be due to the configuration of
the machine itself, as in the previous example. The machine has sorting methods
to filter out the worst solutions, and generates new solutions continuously using the
best ones it has so far. The sorting machines can be manually created by humans, as
in the case of Genetic Programming [18], but this would not lead to an open-ended
method. Only if the machine has the opportunity to also create sorting mechanisms,
partially due to pre-programmed predispositions and partially steered by its inter-
action with the environment (nature vs. nurture), it will be capable of displaying
interesting emergent properties.
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Fig. 1 Classical AI and Generative AI: In Classical AI (left figure) there is often an optimiza-
tion toward some end-state and (preferably) the outcome is predictable. In both the training
and the execution phase this system can be classified as: Input → Process → Output. The
’Process’ part is an implemented model (hand-crafted or learned). The left figure is in a sta-
ble equilibrium. In Generative AI (right figure), the path followed through the phase space
depends on the internal dynamics of the system and the interactions with the environment.
The models are created and tested automatically. The creation process can be steered, but the
outcome is unpredictable to some extent. After uphill explorations, the system may drop into
a lower (better) energy state, with a solution which is qualitatively different from the preced-
ing state (cf. the transition of handwritten copying to book printing). There is no difference
between a training phase and an execution phase. The system learns while executing.

4 Experiments in Generative AI

4.1 Learning

Learning constitutes a core aspect of Generative Artificial Intelligence. Tradition-
ally, learning theories were strongly embedded in reasoning, argumentation and
overt cognition in general. Learning was assumed to take place in a categorical
world, were instances had categorical properties and newly learned insights may be
communicated by the learner using a narrative. Although this perspective on the cog-
nitive process of learning is cogent and recognizable from within ’common sense’,
the paradigm has produced only few examples of convincing machine learning.
Mentionable are the version-spaces symbolic learning model [21, 22] and alignment
based learning in grammar induction [1]. While symbolic and explicit, such models
are brittle and still far from the goal of explaining what they have learned in a natural
narrative. Instead of explicit learning, the successful models of contemporary artifi-
cial intelligence are implicit, akin to Polanyi’s [24] tacit knowledge: neural-network
models [2], hidden-Markov models [26], support-vector machines [5] and Bayesian
learning systems [27]. Although such models may either be analog or symbolic in
their responses, the underlying learning process assumes a continuous parameter
adaptation, either directly, as in the error back-propagation mechanism [29] for the
multi-layer perceptron, or indirectly, as a consequence of exemplar weighing which
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takes place in the support-vector machine. Computer vision, speech and handwrit-
ing recognition and robotic control systems are trained using ’analog’, numerical
rather than discrete, symbolic methods. Such learning mechanisms are functional
as well as adaptive and may ultimately lead to more complex models of artificial
intelligence that do exhibit the potential for a verbal expression of inner states.

4.2 Humans?

However, the largest stumbling block for such a revolution is the fact that current
machine-learning systems require a human researcher to provide a micro world
with constraints and performance criteria. Current machine-learning methods re-
quire sufficiently large data sets of examples of patterns with their corresponding
label or target responses to be produced in this micro world. The informed and
motivated researcher or engineer is ever present and is steering the experimenta-
tion/exploration in great detail. The gain factor in the dissipative process [25] that
takes place between the environment and the learning system is determined by an
out-of-equilibrium energy state (cf. ’adrenalin’) in the researcher him/herself, fur-
ther motivated by the thrill of public benchmark tests and the probability of obtain-
ing appreciation in the social context of scientific endeavor. This state of affairs is
extremely costly. It leads to isolated ’feats’ and successes, such as a particular type
of robot filling one particular instance of a glass with a particular amount of fluid.
However, the total process of wide exploration of the problem space needs to be
repeated by a new PhD researcher for each small variation on the task to be learned.
The total amount of costly human labor is massive and puts a ceiling on the level of
attainable results in artificial intelligence.

4.3 No Humans, Machines!

What is needed are models that make use of a highly active exchange process be-
tween learner and the environment, in such a way that the problem space is contin-
uously explored broadly, thanks to an autonomous and widely diverging bifurcation
of system states. Ideally, this process unrolls, devoid of human interference but in
any case requiring very little steering by humans. If the necessary input/output re-
lations are achieved, such a system should become ’bored’, i.e., divert its attention
to other corners in the problem space. Similarly, if a solution pathway fails to pro-
vide performance improvement for a prolonged period, this should trigger a large
jump to another location in the solution space, preferably with qualitatively differ-
ent solutions than those explored along the unfruitful path. Human labor is then
exchanged with another form of energy dissipation, e.g., in the form of the con-
temporary silicon-based von Neumann/Turing computer or a more advanced form
of massively parallel computation.In a GAI engine, all aspects of human heuristic
exploration will be replaced by autonomous mechanisms.
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Fig. 2 The best value for parameter p needs to be found by the learner. The solution for p
should have a low energy E. Is the global minimum (a) a good solution or is the value for
p at point (b) to be preferred? Intelligent learners ’know’ that the probability of solution (a)
being useful in unseen conditions is fairly low, while the smoothness of the energy bowl at (b)
gives high confidence that the value of Pb will not be very wrong in slightly varied problem
conditions in the future.

4.4 What Is Needed?

What is needed for generative AI is a broadening of the concept of parameter-
value search. For the solution of learning problems, usually a fitness criterion to
be maximized or an energy criterion to be minimized is determined in advance. In
the exploration of a high-dimensional parameter space, the criterion, say, energy E,
will vary. Good solutions have a low energy, bad solutions having high energy. If
the problem space is simple and idealized, the energy landscape would consist of
a multi-dimensional parabola, with a clear and clean singular minimum point. In
practice, however, such energy landscape are highly irregular, with many local min-
ima such that a simplistic Newton-Lagrange method for finding ’the’ solution is not
feasible. One solution has already been proposed to escape this predicament and
it has been widely successful. It consists of the assumption of noisy energy in the
learning system, such that the exploration haphazardly jumps out of local minima,
thereby increasing the probability that a deeper minimum or trough will be found.
When the amount of noise (’temperature’) is gradually decreased until the explo-
ration has become deterministic, the search process is more or less guaranteed to
find the deepest point. This mechanism is called simulated annealing [23] and its
convergence has been demonstrated by theoretical physicist Boltzmann. However,
this precursor of generative AI has three important limitations. First, a practical
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learner does not have the infinite time that is needed to achieve the theoretical min-
imum, i.e., best solution. Second, it is not always guaranteed that the deepest point
in the energy landscape corresponds to the best solution. Its location in parameter
space may be the consequence of lack of data. An example would be a needle-
shaped pit for which statistically it can be easily demonstrated that its exact position
will not be replicated in a slightly changed world. In fact, we see here that the
simplistic Newton-Lagrange heuristic: ”zero partial derivatives are good, because
horizontality indicates an extremum” is not enough. Not only do we want deep pits,
we also prefer solutions that are characterized by a flat smooth bowl rather than a
deep and steep energy ravine (Figure 2). The learner needs rich criteria in order to
determine that a ’sweet spot’ has been achieved, much the same as a bird would
asses a corner of the world to be an appropriate place for nesting, using a number of
criteria instead of one zero-crossing of the derivative along one dimension of appro-
priateness. This means that we would need a much more sophisticated mechanism
to evaluate the goodness of local solutions (read: hypotheses) than is currently the
case in such annealing systems. A well-known variant of stochastic learning con-
cerns the class of genetic algorithms[18]. Here, the exploration of problem space
is slightly more sophisticated in that multiple local solutions are explored in paral-
lel, and blind stochastic exploration is augmented with a ’reuse’ of partial solutions
during learning. The third flaw, however, is most important. These laboratory-based
learning systems assume that the process is completed once the minimum has been
found: It is a training process that is detached from the real environment and its
results are exported to the real world to enter the final phase in their life cycle, the
operational stage. The feedback process is severed. In no way do current learning
models tell us what other portions of the space are to be explored in anticipation of,
or in reaction to an ever changing world.

4.5 First Glimpses

In recent work, we have implemented a very large search engine for word search in
historical handwritten collections. This system, Monk [30], uses image processing
and pattern recognition to identify and rank word candidates from large collections
of books spanning several centuries. The diversity of writing styles requires train-
ing by human experts. However, it would be vastly expensive if a standard model
of experimental machine learning would be used. This would require at least one
PhD researcher per collection, with its particular image processing and handwriting
style peculiarities. The challenge is to obtain an autonomous engine that accepts
word labels of word images from users over internet, but learns independently, in a
continuous (’24 hours/7 days’) manner. While users are motivated to correct system
errors by providing labels, Monk detects where the friction is largest, either on the
basis of human activity in corners of the word space or on the basis of the internal
distance and probability measures indicating sub optimal solutions. A problem gen-
erator (the abbot) spawns sub tasks (novices) that execute a local word-learning or
ranking task. In a cooperation between man and machine, about 300 thousand word
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Fig. 3 Temporal evolution of the number of harvested word labels in the Monk system for
handwritten word search in a number of books, in a loglog curve. Learning is characterized
by growth spurts and flattening periods. The developing number of indexed words for one of
the books from the Cabinet of the Queen of the Dutch National Archive is highlighted as the
thick curve. The steep points in the curve are determined by the product of human effort and
word-recognition performance. The latter is realized thanks to the investment of electrical
energy (compute time on a high-performance cluster).

labels could be harvested. This process is ongoing. The continuity and the nature
of the problem generator guarantee that both local (down-hill) optimization and di-
versity (up-hill global exploration) are realized. Figure 3 shows the time course for
the number of harvested word labels for a number of historical books. This number
is increasing over time, but it is more important to notice the discontinuity of this
process. Although there may be underlying random fluctuations in both human and
machine effort in training the machine, there is a non-linear speedup as evidenced
by the upward jumps in the curves. If the handwriting classifier performs well on a
particular word, it becomes very easy for the human volunteers to label large sets
of instances as ’correct’. In a similar vein to the development of the guns, from
muskets and front-loaded rifles to automatic guns and the development of air planes
from the Wright plane up to modern fighter jets, there is, in Monk, a process where
energy is spent on friction points in the technology: words not recognized properly
elicit human irritation and subsequent efforts to smoothen the world, i.e., to create
order from chaos. In our view, the process is a nice example of ’tracking the ma-
chinic phylum’. While it is too early to call this learning model in the Monk system
a machine implementation of generative artificial intelligence by autonomous bifur-
cation processes, the results are exciting and indicative of a new way of tackling
traditional ’hard’ problems such as the recognition of ancient historical scripts.
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5 Concluding Remarks

The creation of intelligent machines requires more than the manual tinkering by
humans. This article discusses Generative Artificial Intelligence which combines
neo-cybernetics and the possibility spaces of post-structuralistic philosophy. By ac-
tual experiments we demonstrate how present day machine learning technology can
be applied to create generative systems where humans can steer the developmental
scaffolding of the machine. Using a profound understanding of non-linear dynami-
cal systems for the creation, and not only for the description, of intelligent systems
might lead us not only to a better understanding of how to create intelligent ma-
chines. It could lead to machines that can build their own intelligence.
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